Kruškalov algoritem

V tej vadnici boste izvedeli, kako deluje Kruskalov algoritem. Prav tako boste našli delovne primere Kruskalovega algoritma v jezikih C, C ++, Java in Python.

Kruskalov algoritem je minimalni drevesni algoritem, ki vzame graf kot vhod in najde podskupino robov tega grafa, ki

  • tvorijo drevo, ki vključuje vsako oglišče
  • ima najmanjšo vsoto uteži med vsemi drevesi, ki jih lahko oblikujemo iz grafa

Kako deluje Kruskalov algoritem

Spada v razred algoritmov, imenovanih pohlepni algoritmi, ki najdejo lokalni optimum v upanju, da bodo našli globalni optimum.

Začnemo z robov z najmanjšo težo in dodajamo robove, dokler ne dosežemo cilja.

Koraki za izvajanje Kruskalovega algoritma so naslednji:

  1. Razvrstite vse robove od majhne do visoke
  2. Vzemite rob z najmanjšo težo in ga dodajte drevesu. Če je dodajanje roba ustvarilo cikel, zavrnite ta rob.
  3. Nadaljujte z dodajanjem robov, dokler ne dosežemo vseh točk.

Primer Kruskalovega algoritma

Začnite s tehtanim grafom Izberite rob z najmanjšo težo, če jih je več kot 1, izberite kogar koli Izberite naslednji najkrajši rob in ga dodajte Izberite naslednji najkrajši rob, ki ne ustvarja cikla in ga dodajte Izberite naslednji najkrajši rob to ne ustvari cikla in ga dodaj Ponavljajte, dokler ne dobite drevesa

Psevkodo kruskalnega algoritma

Vsak minimalni algoritem drevesa, ki se razteza, se vrti okoli preverjanja, ali dodajanje roba ustvari zanko ali ne.

Najpogostejši način, kako to ugotoviti, je algoritem, imenovan Union FInd. Algoritem Union-Find deli točke na grozde in nam omogoča, da preverimo, ali dve točki pripadata isti gruči ali ne, in se tako odločimo, ali dodajanje roba ustvari cikel.

 KRUSKAL(G): A = ∅ For each vertex v ∈ G.V: MAKE-SET(v) For each edge (u, v) ∈ G.E ordered by increasing order by weight(u, v): if FIND-SET(u) ≠ FIND-SET(v): A = A ∪ ((u, v)) UNION(u, v) return A

Primeri Python, Java in C / C ++

Python Java C C ++
 # Kruskal's algorithm in Python class Graph: def __init__(self, vertices): self.V = vertices self.graph = () def add_edge(self, u, v, w): self.graph.append((u, v, w)) # Search function def find(self, parent, i): if parent(i) == i: return i return self.find(parent, parent(i)) def apply_union(self, parent, rank, x, y): xroot = self.find(parent, x) yroot = self.find(parent, y) if rank(xroot) rank(yroot): parent(yroot) = xroot else: parent(yroot) = xroot rank(xroot) += 1 # Applying Kruskal algorithm def kruskal_algo(self): result = () i, e = 0, 0 self.graph = sorted(self.graph, key=lambda item: item(2)) parent = () rank = () for node in range(self.V): parent.append(node) rank.append(0) while e < self.V - 1: u, v, w = self.graph(i) i = i + 1 x = self.find(parent, u) y = self.find(parent, v) if x != y: e = e + 1 result.append((u, v, w)) self.apply_union(parent, rank, x, y) for u, v, weight in result: print("%d - %d: %d" % (u, v, weight)) g = Graph(6) g.add_edge(0, 1, 4) g.add_edge(0, 2, 4) g.add_edge(1, 2, 2) g.add_edge(1, 0, 4) g.add_edge(2, 0, 4) g.add_edge(2, 1, 2) g.add_edge(2, 3, 3) g.add_edge(2, 5, 2) g.add_edge(2, 4, 4) g.add_edge(3, 2, 3) g.add_edge(3, 4, 3) g.add_edge(4, 2, 4) g.add_edge(4, 3, 3) g.add_edge(5, 2, 2) g.add_edge(5, 4, 3) g.kruskal_algo()
 // Kruskal's algorithm in Java import java.util.*; class Graph ( class Edge implements Comparable ( int src, dest, weight; public int compareTo(Edge compareEdge) ( return this.weight - compareEdge.weight; ) ); // Union class subset ( int parent, rank; ); int vertices, edges; Edge edge(); // Graph creation Graph(int v, int e) ( vertices = v; edges = e; edge = new Edge(edges); for (int i = 0; i < e; ++i) edge(i) = new Edge(); ) int find(subset subsets(), int i) ( if (subsets(i).parent != i) subsets(i).parent = find(subsets, subsets(i).parent); return subsets(i).parent; ) void Union(subset subsets(), int x, int y) ( int xroot = find(subsets, x); int yroot = find(subsets, y); if (subsets(xroot).rank subsets(yroot).rank) subsets(yroot).parent = xroot; else ( subsets(yroot).parent = xroot; subsets(xroot).rank++; ) ) // Applying Krushkal Algorithm void KruskalAlgo() ( Edge result() = new Edge(vertices); int e = 0; int i = 0; for (i = 0; i < vertices; ++i) result(i) = new Edge(); // Sorting the edges Arrays.sort(edge); subset subsets() = new subset(vertices); for (i = 0; i < vertices; ++i) subsets(i) = new subset(); for (int v = 0; v < vertices; ++v) ( subsets(v).parent = v; subsets(v).rank = 0; ) i = 0; while (e < vertices - 1) ( Edge next_edge = new Edge(); next_edge = edge(i++); int x = find(subsets, next_edge.src); int y = find(subsets, next_edge.dest); if (x != y) ( result(e++) = next_edge; Union(subsets, x, y); ) ) for (i = 0; i < e; ++i) System.out.println(result(i).src + " - " + result(i).dest + ": " + result(i).weight); ) public static void main(String() args) ( int vertices = 6; // Number of vertices int edges = 8; // Number of edges Graph G = new Graph(vertices, edges); G.edge(0).src = 0; G.edge(0).dest = 1; G.edge(0).weight = 4; G.edge(1).src = 0; G.edge(1).dest = 2; G.edge(1).weight = 4; G.edge(2).src = 1; G.edge(2).dest = 2; G.edge(2).weight = 2; G.edge(3).src = 2; G.edge(3).dest = 3; G.edge(3).weight = 3; G.edge(4).src = 2; G.edge(4).dest = 5; G.edge(4).weight = 2; G.edge(5).src = 2; G.edge(5).dest = 4; G.edge(5).weight = 4; G.edge(6).src = 3; G.edge(6).dest = 4; G.edge(6).weight = 3; G.edge(7).src = 5; G.edge(7).dest = 4; G.edge(7).weight = 3; G.KruskalAlgo(); ) )
 // Kruskal's algorithm in C #include #define MAX 30 typedef struct edge ( int u, v, w; ) edge; typedef struct edge_list ( edge data(MAX); int n; ) edge_list; edge_list elist; int Graph(MAX)(MAX), n; edge_list spanlist; void kruskalAlgo(); int find(int belongs(), int vertexno); void applyUnion(int belongs(), int c1, int c2); void sort(); void print(); // Applying Krushkal Algo void kruskalAlgo() ( int belongs(MAX), i, j, cno1, cno2; elist.n = 0; for (i = 1; i < n; i++) for (j = 0; j < i; j++) ( if (Graph(i)(j) != 0) ( elist.data(elist.n).u = i; elist.data(elist.n).v = j; elist.data(elist.n).w = Graph(i)(j); elist.n++; ) ) sort(); for (i = 0; i < n; i++) belongs(i) = i; spanlist.n = 0; for (i = 0; i < elist.n; i++) ( cno1 = find(belongs, elist.data(i).u); cno2 = find(belongs, elist.data(i).v); if (cno1 != cno2) ( spanlist.data(spanlist.n) = elist.data(i); spanlist.n = spanlist.n + 1; applyUnion(belongs, cno1, cno2); ) ) ) int find(int belongs(), int vertexno) ( return (belongs(vertexno)); ) void applyUnion(int belongs(), int c1, int c2) ( int i; for (i = 0; i < n; i++) if (belongs(i) == c2) belongs(i) = c1; ) // Sorting algo void sort() ( int i, j; edge temp; for (i = 1; i < elist.n; i++) for (j = 0; j elist.data(j + 1).w) ( temp = elist.data(j); elist.data(j) = elist.data(j + 1); elist.data(j + 1) = temp; ) ) // Printing the result void print() ( int i, cost = 0; for (i = 0; i < spanlist.n; i++) ( printf("%d - %d : %d", spanlist.data(i).u, spanlist.data(i).v, spanlist.data(i).w); cost = cost + spanlist.data(i).w; ) printf("Spanning tree cost: %d", cost); ) int main() ( int i, j, total_cost; n = 6; Graph(0)(0) = 0; Graph(0)(1) = 4; Graph(0)(2) = 4; Graph(0)(3) = 0; Graph(0)(4) = 0; Graph(0)(5) = 0; Graph(0)(6) = 0; Graph(1)(0) = 4; Graph(1)(1) = 0; Graph(1)(2) = 2; Graph(1)(3) = 0; Graph(1)(4) = 0; Graph(1)(5) = 0; Graph(1)(6) = 0; Graph(2)(0) = 4; Graph(2)(1) = 2; Graph(2)(2) = 0; Graph(2)(3) = 3; Graph(2)(4) = 4; Graph(2)(5) = 0; Graph(2)(6) = 0; Graph(3)(0) = 0; Graph(3)(1) = 0; Graph(3)(2) = 3; Graph(3)(3) = 0; Graph(3)(4) = 3; Graph(3)(5) = 0; Graph(3)(6) = 0; Graph(4)(0) = 0; Graph(4)(1) = 0; Graph(4)(2) = 4; Graph(4)(3) = 3; Graph(4)(4) = 0; Graph(4)(5) = 0; Graph(4)(6) = 0; Graph(5)(0) = 0; Graph(5)(1) = 0; Graph(5)(2) = 2; Graph(5)(3) = 0; Graph(5)(4) = 3; Graph(5)(5) = 0; Graph(5)(6) = 0; kruskalAlgo(); print(); )
 // Kruskal's algorithm in C++ #include #include #include using namespace std; #define edge pair class Graph ( private: vector 
 G; // graph vector 
 T; // mst int *parent; int V; // number of vertices/nodes in graph public: Graph(int V); void AddWeightedEdge(int u, int v, int w); int find_set(int i); void union_set(int u, int v); void kruskal(); void print(); ); Graph::Graph(int V) ( parent = new int(V); //i 0 1 2 3 4 5 //parent(i) 0 1 2 3 4 5 for (int i = 0; i < V; i++) parent(i) = i; G.clear(); T.clear(); ) void Graph::AddWeightedEdge(int u, int v, int w) ( G.push_back(make_pair(w, edge(u, v))); ) int Graph::find_set(int i) ( // If i is the parent of itself if (i == parent(i)) return i; else // Else if i is not the parent of itself // Then i is not the representative of his set, // so we recursively call Find on its parent return find_set(parent(i)); ) void Graph::union_set(int u, int v) ( parent(u) = parent(v); ) void Graph::kruskal() ( int i, uRep, vRep; sort(G.begin(), G.end()); // increasing weight for (i = 0; i < G.size(); i++) ( uRep = find_set(G(i).second.first); vRep = find_set(G(i).second.second); if (uRep != vRep) ( T.push_back(G(i)); // add to tree union_set(uRep, vRep); ) ) ) void Graph::print() ( cout << "Edge :" << " Weight" << endl; for (int i = 0; i < T.size(); i++) ( cout << T(i).second.first << " - " << T(i).second.second << " : " << T(i).first; cout << endl; ) ) int main() ( Graph g(6); g.AddWeightedEdge(0, 1, 4); g.AddWeightedEdge(0, 2, 4); g.AddWeightedEdge(1, 2, 2); g.AddWeightedEdge(1, 0, 4); g.AddWeightedEdge(2, 0, 4); g.AddWeightedEdge(2, 1, 2); g.AddWeightedEdge(2, 3, 3); g.AddWeightedEdge(2, 5, 2); g.AddWeightedEdge(2, 4, 4); g.AddWeightedEdge(3, 2, 3); g.AddWeightedEdge(3, 4, 3); g.AddWeightedEdge(4, 2, 4); g.AddWeightedEdge(4, 3, 3); g.AddWeightedEdge(5, 2, 2); g.AddWeightedEdge(5, 4, 3); g.kruskal(); g.print(); return 0; )  

Kruskalov vs Primov algoritem

Primov algoritem je še en priljubljen algoritem drevesa z minimalnim razponom, ki uporablja drugačno logiko za iskanje MST grafa. Namesto da začne z roba, se Primov algoritem začne z oglišča in nadaljuje z dodajanjem robov z najmanjšo težo, ki niso v drevesu, dokler niso zajeti vsi točki.

Zapletenost algoritma Kruskal

Časovna kompleksnost Kruškalovega algoritma je: O (E log E).

Kruskalove aplikacije za algoritme

  • Za postavitev električne napeljave
  • V računalniškem omrežju (povezava LAN)

Zanimive Članki...