Struktura podatkov krožne čakalne vrste

V tej vadnici boste izvedeli, kaj je krožna vrsta. Prav tako boste našli izvedbo krožne čakalne vrste v C, C ++, Java in Python.

Krožna vrsta se izogne ​​zapravljanju prostora v običajni izvedbi čakalne vrste z uporabo nizov.

Omejitev običajne čakalne vrste

Kot lahko vidite na zgornji sliki, je bila vrsta čakalnih vrst zmanjšana.

Indeksa 0 in 1 je mogoče uporabiti šele po ponastavitvi čakalne vrste, ko so vsi elementi odstranjeni iz čakalne vrste.

Kako deluje krožna vrsta

Circular Queue deluje po postopku krožnega povečevanja, tj. Ko poskusimo povečati kazalec in pridemo do konca čakalne vrste, začnemo z začetka čakalne vrste.

Tu se krožni prirastek izvede z modulskim deljenjem z velikostjo čakalne vrste. To je,

 če je REAR + 1 == 5 (prelivanje!), REAR = (REAR + 1)% 5 = 0 (začetek čakalne vrste)
Krožna predstavitev čakalne vrste

Operacije krožne čakalne vrste

Krožna vrsta deluje na naslednji način:

  • dva kazalca PREDNJI in ZADNJI
  • FRONT sledi prvemu elementu čakalne vrste
  • REAR sledite zadnjim elementom čakalne vrste
  • sprva nastavite vrednost FRONT in REAR na -1

1. Delovanje v čakalni vrsti

  • preverite, ali je vrsta polna
  • za prvi element nastavite vrednost FRONT na 0
  • krožno povečajte indeks REAR za 1 (tj. če zadek doseže konec, bi bil naslednji na začetku čakalne vrste)
  • dodajte nov element v položaj, na katerega kaže REAR

2. Postopek odstranjevanja iz čakalne vrste

  • preverite, ali je vrsta prazna
  • vrne vrednost, ki jo kaže FRONT
  • krožno povečajte indeks FRONT za 1
  • za zadnji element ponastavite vrednosti FRONT in REAR na -1

Vendar ima preverjanje celotne čakalne vrste nov dodaten primer:

  • Primer 1: FRONT = 0 && REAR == SIZE - 1
  • Primer 2: FRONT = REAR + 1

Drugi primer se zgodi, ko se REAR začne z 0 zaradi krožnega prirastka in ko je njegova vrednost le 1 manjša od FRONT, je čakalna vrsta polna.

Enque in Deque operacije

Implementacije krožne čakalne vrste v Python, Java, C in C ++

Najpogostejša izvedba čakalne vrste je uporaba nizov, lahko pa jo izvedemo tudi s seznami.

Python Java C C +
 # Circular Queue implementation in Python class MyCircularQueue(): def __init__(self, k): self.k = k self.queue = (None) * k self.head = self.tail = -1 # Insert an element into the circular queue def enqueue(self, data): if ((self.tail + 1) % self.k == self.head): print("The circular queue is full") elif (self.head == -1): self.head = 0 self.tail = 0 self.queue(self.tail) = data else: self.tail = (self.tail + 1) % self.k self.queue(self.tail) = data # Delete an element from the circular queue def dequeue(self): if (self.head == -1): print("The circular queue is empty") elif (self.head == self.tail): temp = self.queue(self.head) self.head = -1 self.tail = -1 return temp else: temp = self.queue(self.head) self.head = (self.head + 1) % self.k return temp def printCQueue(self): if(self.head == -1): print("No element in the circular queue") elif (self.tail>= self.head): for i in range(self.head, self.tail + 1): print(self.queue(i), end=" ") print() else: for i in range(self.head, self.k): print(self.queue(i), end=" ") for i in range(0, self.tail + 1): print(self.queue(i), end=" ") print() # Your MyCircularQueue object will be instantiated and called as such: obj = MyCircularQueue(5) obj.enqueue(1) obj.enqueue(2) obj.enqueue(3) obj.enqueue(4) obj.enqueue(5) print("Initial queue") obj.printCQueue() obj.dequeue() print("After removing an element from the queue") obj.printCQueue() 
 // Circular Queue implementation in Java public class CQueue ( int SIZE = 5; // Size of Circular Queue int front, rear; int items() = new int(SIZE); CQueue() ( front = -1; rear = -1; ) // Check if the queue is full boolean isFull() ( if (front == 0 && rear == SIZE - 1) ( return true; ) if (front == rear + 1) ( return true; ) return false; ) // Check if the queue is empty boolean isEmpty() ( if (front == -1) return true; else return false; ) // Adding an element void enQueue(int element) ( if (isFull()) ( System.out.println("Queue is full"); ) else ( if (front == -1) front = 0; rear = (rear + 1) % SIZE; items(rear) = element; System.out.println("Inserted " + element); ) ) // Removing an element int deQueue() ( int element; if (isEmpty()) ( System.out.println("Queue is empty"); return (-1); ) else ( element = items(front); if (front == rear) ( front = -1; rear = -1; ) /* Q has only one element, so we reset the queue after deleting it. */ else ( front = (front + 1) % SIZE; ) return (element); ) ) void display() ( /* Function to display status of Circular Queue */ int i; if (isEmpty()) ( System.out.println("Empty Queue"); ) else ( System.out.println("Front -> " + front); System.out.println("Items -> "); for (i = front; i != rear; i = (i + 1) % SIZE) System.out.print(items(i) + " "); System.out.println(items(i)); System.out.println("Rear -> " + rear); ) ) public static void main(String() args) ( CQueue q = new CQueue(); // Fails because front = -1 q.deQueue(); q.enQueue(1); q.enQueue(2); q.enQueue(3); q.enQueue(4); q.enQueue(5); // Fails to enqueue because front == 0 && rear == SIZE - 1 q.enQueue(6); q.display(); int elem = q.deQueue(); if (elem != -1) ( System.out.println("Deleted Element is " + elem); ) q.display(); q.enQueue(7); q.display(); // Fails to enqueue because front == rear + 1 q.enQueue(8); ) )
 // Circular Queue implementation in C #include #define SIZE 5 int items(SIZE); int front = -1, rear = -1; // Check if the queue is full int isFull() ( if ((front == rear + 1) || (front == 0 && rear == SIZE - 1)) return 1; return 0; ) // Check if the queue is empty int isEmpty() ( if (front == -1) return 1; return 0; ) // Adding an element void enQueue(int element) ( if (isFull()) printf(" Queue is full!! "); else ( if (front == -1) front = 0; rear = (rear + 1) % SIZE; items(rear) = element; printf(" Inserted -> %d", element); ) ) // Removing an element int deQueue() ( int element; if (isEmpty()) ( printf(" Queue is empty !! "); return (-1); ) else ( element = items(front); if (front == rear) ( front = -1; rear = -1; ) // Q has only one element, so we reset the // queue after dequeing it. ? else ( front = (front + 1) % SIZE; ) printf(" Deleted element -> %d ", element); return (element); ) ) // Display the queue void display() ( int i; if (isEmpty()) printf(" Empty Queue"); else ( printf(" Front -> %d ", front); printf(" Items -> "); for (i = front; i != rear; i = (i + 1) % SIZE) ( printf("%d ", items(i)); ) printf("%d ", items(i)); printf(" Rear -> %d ", rear); ) ) int main() ( // Fails because front = -1 deQueue(); enQueue(1); enQueue(2); enQueue(3); enQueue(4); enQueue(5); // Fails to enqueue because front == 0 && rear == SIZE - 1 enQueue(6); display(); deQueue(); display(); enQueue(7); display(); // Fails to enqueue because front == rear + 1 enQueue(8); return 0; )
 // Circular Queue implementation in C++ #include #define SIZE 5 /* Size of Circular Queue */ using namespace std; class Queue ( private: int items(SIZE), front, rear; public: Queue() ( front = -1; rear = -1; ) // Check if the queue is full bool isFull() ( if (front == 0 && rear == SIZE - 1) ( return true; ) if (front == rear + 1) ( return true; ) return false; ) // Check if the queue is empty bool isEmpty() ( if (front == -1) return true; else return false; ) // Adding an element void enQueue(int element) ( if (isFull()) ( cout << "Queue is full"; ) else ( if (front == -1) front = 0; rear = (rear + 1) % SIZE; items(rear) = element; cout << endl << "Inserted " << element << endl; ) ) // Removing an element int deQueue() ( int element; if (isEmpty()) ( cout << "Queue is empty" << endl; return (-1); ) else ( element = items(front); if (front == rear) ( front = -1; rear = -1; ) // Q has only one element, // so we reset the queue after deleting it. else ( front = (front + 1) % SIZE; ) return (element); ) ) void display() ( // Function to display status of Circular Queue int i; if (isEmpty()) ( cout << endl << "Empty Queue" << endl; ) else ( cout < " << front; cout << endl < "; for (i = front; i != rear; i = (i + 1) % SIZE) cout << items(i); cout << items(i); cout << endl < " << rear; ) ) ); int main() ( Queue q; // Fails because front = -1 q.deQueue(); q.enQueue(1); q.enQueue(2); q.enQueue(3); q.enQueue(4); q.enQueue(5); // Fails to enqueue because front == 0 && rear == SIZE - 1 q.enQueue(6); q.display(); int elem = q.deQueue(); if (elem != -1) cout << endl << "Deleted Element is " << elem; q.display(); q.enQueue(7); q.display(); // Fails to enqueue because front == rear + 1 q.enQueue(8); return 0; )

Analiza kompleksnosti krožne čakalne vrste

Zapletenost operacij čakalne vrste in dequeue krožne čakalne vrste je O (1) za (izvedbe matrike).

Aplikacije krožne čakalne vrste

  • Načrtovanje CPU
  • Upravljanje pomnilnika
  • Upravljanje prometa

Zanimive Članki...